7 research outputs found

    Embedded Machine Learning: Emphasis on Hardware Accelerators and Approximate Computing for Tactile Data Processing

    Get PDF
    Machine Learning (ML) a subset of Artificial Intelligence (AI) is driving the industrial and technological revolution of the present and future. We envision a world with smart devices that are able to mimic human behavior (sense, process, and act) and perform tasks that at one time we thought could only be carried out by humans. The vision is to achieve such a level of intelligence with affordable, power-efficient, and fast hardware platforms. However, embedding machine learning algorithms in many application domains such as the internet of things (IoT), prostheses, robotics, and wearable devices is an ongoing challenge. A challenge that is controlled by the computational complexity of ML algorithms, the performance/availability of hardware platforms, and the application\u2019s budget (power constraint, real-time operation, etc.). In this dissertation, we focus on the design and implementation of efficient ML algorithms to handle the aforementioned challenges. First, we apply Approximate Computing Techniques (ACTs) to reduce the computational complexity of ML algorithms. Then, we design custom Hardware Accelerators to improve the performance of the implementation within a specified budget. Finally, a tactile data processing application is adopted for the validation of the proposed exact and approximate embedded machine learning accelerators. The dissertation starts with the introduction of the various ML algorithms used for tactile data processing. These algorithms are assessed in terms of their computational complexity and the available hardware platforms which could be used for implementation. Afterward, a survey on the existing approximate computing techniques and hardware accelerators design methodologies is presented. Based on the findings of the survey, an approach for applying algorithmic-level ACTs on machine learning algorithms is provided. Then three novel hardware accelerators are proposed: (1) k-Nearest Neighbor (kNN) based on a selection-based sorter, (2) Tensorial Support Vector Machine (TSVM) based on Shallow Neural Networks, and (3) Hybrid Precision Binary Convolution Neural Network (BCNN). The three accelerators offer a real-time classification with monumental reductions in the hardware resources and power consumption compared to existing implementations targeting the same tactile data processing application on FPGA. Moreover, the approximate accelerators maintain a high classification accuracy with a loss of at most 5%

    A Shallow Neural Network for Real-Time Embedded Machine Learning for Tensorial Tactile Data Processing

    No full text
    none4This paper presents a novel hardware architecture of the Tensorial Support Vector Machine (TSVM) based on Shallow Neural Networks (NN) for the Single Value Decomposition (SVD) computation. The proposed NN achieves a comparable Mean Squared Error and Cosine Similarity to the widely used one-sided Jacobi algorithm. When implemented on an FPGA, the NN offers 324times faster computations than the one-sided Jacobi with reductions up to 58% and 67% in terms of hardware resources and power consumption respectively. When validated on a touch modality classification problem, the NN-based TSVM implementation has achieved a real-time operation while consuming about 88% less energy per classification than the Jacobi-based TSVM with an accuracy loss of at most 3%. Such results offer the ability to deploy intelligence on resource-limited platform for energy-constrained applications.mixedYounes H.; Ibrahim A.; Rizk M.; Valle M.Younes, H.; Ibrahim, A.; Rizk, M.; Valle, M

    Data Oriented Approximate K-Nearest Neighbor Classifier for Touch Modality Recognition

    No full text
    reserved4siApproximate computing techniques offer a promising solution to reduce the hardware complexity and power consumption imposed when embedding machine learning algorithms. The reduction comes at the cost of some performance degradation. This paper presents an approximate machine learning classifier for touch modality recognition. Experimental results demonstrate that the use of software level approximation techniques reduce the execution time and memory usage up to 38% and 55% respectively, at the cost of accuracy loss less than 10% for the target application. © 2019 IEEE.mixedYounes H., Ibrahim A., Rizk M., Valle M.Younes, H.; Ibrahim, A.; Rizk, M.; Valle, M

    Hybrid Fixed-point/Binary Convolutional Neural Network Accelerator for Real-time Tactile Processing

    No full text
    International audienceThis paper presents the architecture and the implementation for a hybrid fixed-point binary convolutional neural network (H-CNN) targeting tactile data processing application. H-CNN combines quantization and binarization operations to achieve a low computational complexity with an acceptable accuracy. When implemented on FPGA, H-CNN architecture achieved a real-time classification i.e. 0.8 ms while consuming 53 mW dynamic power. Compared to existing solutions, H-CNN offers a speedup of up to 6875× with 99.6% energy reduction while recording up to 7% increase in the classification accuracy of touch modalities

    Inter-Operability of Compression Techniques for Efficient Deployment of CNNs on Microcontrollers

    No full text
    International audienceMachine Learning (ML) has become state of the art for various tasks, including classification of accelerometer data. In the world of Internet of Things (IoT), the available hardware with low-power consumption is often microcontrollers. However, one of the challenges for embedding machine learning on microcontrollers is that the available memory space is very limited, and this memory is also occupied by the rest of the software elements needed in the IoT device. The problem is then to design ML architectures that have a very low memory footprint, while maintaining a low error rate. In this paper, a methodology is proposed towards the deployment of efficient machine learning on microcontrollers. Then, such methodology is used to investigate the effect of using compression techniques mainly pruning, quantization, and coding on the memory budget. Indeed, we know that these techniques reduce the model size, but not how these techniques interoperate to reach the best accuracy to memory trade-off. A Convolutional Neural Network (CNN) and a Human Activity Recognition (HAR) application has been adopted for the validation of the study

    The association between macrovascular complications and intensive care admission, invasive mechanical ventilation, and mortality in people with diabetes hospitalized for coronavirus disease-2019 (COVID-19)

    No full text
    International audienceAbstract Background It is not clear whether pre-existing macrovascular complications (ischemic heart disease, stroke or peripheral artery disease) are associated with health outcomes in people with diabetes mellitus hospitalized for COVID-19. Methods We conducted cohort studies of adults with pre-existing diabetes hospitalized for COVID-19 infection in the UK, France, and Spain during the early phase of the pandemic (between March 2020—October 2020). Logistic regression models adjusted for demographic factors and other comorbidities were used to determine associations between previous macrovascular disease and relevant clinical outcomes: mortality, intensive care unit (ICU) admission and use of invasive mechanical ventilation (IMV) during the hospitalization. Output from individual logistic regression models for each cohort was combined in a meta-analysis. Results Complete data were available for 4,106 (60.4%) individuals. Of these, 1,652 (40.2%) had any prior macrovascular disease of whom 28.5% of patients died. Mortality was higher for people with compared to those without previous macrovascular disease (37.7% vs 22.4%). The combined crude odds ratio (OR) for previous macrovascular disease and mortality for all four cohorts was 2.12 (95% CI 1.83–2.45 with an I 2 of 60%, reduced after adjustments for age, sex, type of diabetes, hypertension, microvascular disease, ethnicity, and BMI to adjusted OR 1.53 [95% CI 1.29–1.81]) for the three cohorts. Further analysis revealed that ischemic heart disease and cerebrovascular disease were the main contributors of adverse outcomes. However, proportions of people admitted to ICU (adjOR 0.48 [95% CI 0.31–0.75], I 2 60%) and the use of IMV during hospitalization (adjOR 0.52 [95% CI 0.40–0.68], I 2 37%) were significantly lower for people with previous macrovascular disease. Conclusions This large multinational study of people with diabetes mellitus hospitalized for COVID-19 demonstrates that previous macrovascular disease is associated with higher mortality and lower proportions admitted to ICU and treated with IMV during hospitalization suggesting selective admission criteria. Our findings highlight the importance correctly assess the prognosis and intensive monitoring in this high-risk group of patients and emphasize the need to design specific public health programs aimed to prevent SARS-CoV-2 infection in this subgroup

    Pancreatic surgery outcomes: multicentre prospective snapshot study in 67 countries

    No full text
    corecore